Indian Journal of Occupational and Environmental Medicine   Official publication of Indian Association of  0ccupational  Health  
 Print this page Email this page   Small font sizeDefault font sizeIncrease font size
 Users Online:387

  IAOH | Subscription | e-Alerts | Feedback | Login 

Home About us Current Issue Archives Search Instructions
   Next article
   Previous article
   Table of Contents

   Similar in PUBMED
     Search Pubmed for
     Search in Google Scholar for
   Related articles
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed6014    
    Printed359    
    Emailed0    
    PDF Downloaded144    
    Comments [Add]    
    Cited by others 4    

Recommend this journal

 

 REVIEW ARTICLE
Year : 2010  |  Volume : 14  |  Issue : 2  |  Page : 31-38

An overview of caspase: Apoptotic protein for silicosis


1 Department of Biochemistry, National Institute of Miners' Health, JNARDDC Campus Wadi, Nagpur, India
2 Department of Biochemistry, L. I. T, R.T.M. University, Nagpur, India

Correspondence Address:
Rajani G Tumane
Department of Biochemistry, National Institute of Miners' Health, JNARDDC Campus, Wadi, Nagpur-440023, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0019-5278.72237

Rights and Permissions

Silicosis is a chronic lung disease characterized by granulomatous and fibrotic lesions, which occurs due to accumulation of respirable silica mineral particles. Apoptosis is an important phenomenon of cell death in silicosis. The relationship between silica dust and its exposure is well established. But, the complex chain of cellular responses, which leads to caspase activation in silicosis, has not been fully discovered. Caspase activation plays a central role in the execution of apoptosis. Silica-induced apoptosis of the alveolar macrophages could potentially favor a proinflammatory state, occurring in the lungs of silicotic patients, resulting in the activation of caspase prior to induction of the intrinsic and extrinsic apoptosis pathways. Recent studies indicated that apoptosis may involve in pulmonary disorders. This review summarizes the current knowledge about the underling mechanism of biochemical pathways in caspase activation that have been ignored so far in silicosis. In addition, caspase could be a key apoptotic protein that can be used as an effective biomarker for the study of occupational diseases. It may provide an important link in understanding the molecular mechanisms of silica-induced lung pathogenesis.






[FULL TEXT] [PDF]*


        
Print this article     Email this article